首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   38篇
  国内免费   243篇
安全科学   14篇
废物处理   72篇
环保管理   81篇
综合类   482篇
基础理论   132篇
污染及防治   187篇
评价与监测   8篇
社会与环境   2篇
  2023年   6篇
  2022年   25篇
  2021年   18篇
  2020年   21篇
  2019年   22篇
  2018年   23篇
  2017年   19篇
  2016年   32篇
  2015年   52篇
  2014年   83篇
  2013年   72篇
  2012年   58篇
  2011年   46篇
  2010年   35篇
  2009年   54篇
  2008年   52篇
  2007年   52篇
  2006年   46篇
  2005年   34篇
  2004年   35篇
  2003年   26篇
  2002年   19篇
  2001年   33篇
  2000年   22篇
  1999年   20篇
  1998年   12篇
  1997年   10篇
  1996年   11篇
  1995年   10篇
  1994年   5篇
  1993年   9篇
  1992年   10篇
  1991年   4篇
  1990年   1篇
  1987年   1篇
排序方式: 共有978条查询结果,搜索用时 171 毫秒
61.
提高污泥碱性发酵挥发酸积累的新方法   总被引:4,自引:2,他引:2  
为了加大剩余污泥在碱性条件下的水解酸化程度,本研究尝试了两种新的能促进污泥碱性发酵产酸的方式,分别是向批式的污泥碱性发酵系统中投加未灭菌发酵污泥和投加灭菌发酵污泥,结合温度的影响(10℃和35℃)分别考察了这两种方式对污泥水解酸化效果的影响.结果表明,中温有利于水解酶和产酸菌作用的发挥,增大了污泥的水解酸化程度,体系内有明显的挥发酸(VFAs)积累.35℃条件下,两种方式都在很大程度上促进了新鲜污泥的水解酸化程度,经灭菌后的发酵污泥的投加较等量的未灭菌的发酵污泥的投加效果更为显著.前者的水解速率是后者的2倍,发酵末期酸积累量为后者的1.5倍,且前者在较长的发酵时间内VFAs含量维持恒定.分析两种方式能促进污泥水解酸化的原因得到:未灭菌发酵污泥的投加是向系统中引入了一定量的产酸菌,灭菌发酵污泥的投加引入了大量的较易水解的有机底物.水解产物的增加能在更大程度上影响产酸的效果.因此,中温条件下向污泥碱性发酵系统中投加经灭菌处理后的发酵污泥是提高剩余污泥发酵产酸量更为有效的方式.  相似文献   
62.
为了提高阿特拉津降解菌Acinetobactersp.DNS32的产量,分别采用响应曲面法和基于人工神经网络的遗传算法对阿特拉津降解菌DNS32发酵培养基中3个重要基质成分(玉米粉、豆饼粉、K:HPO。)进行优化研究。响应曲面法确定3种成分的含量为玉米粉39.494g/L,豆饼粉25.638g/L和K。HPO。3.265g/L时,预测发酵活菌最大生物量为7.079×10^8CFU/mL,实测量为7.194×10^8CFU/mL;人工神经网络结合遗传算法优化确定3种主要成分含量为玉米粉为39.650g/L,豆饼粉为25.500g/L,K2HPO4为2.624g/L时,预测最大值为7.199×10^8CFU/mL,实测量为7.244×10。CFU/mL;最终确定培养基配方:玉米粉为39.650g/L,豆饼粉为25.500g/L,K2HPO4为2.624g/L,CaCO3为3.000g/L,MgSO4·7H2O和NaCl均为0.200g/L;优化后阿特拉津降解菌DNS32发酵生物量比优化前提高了36.6%。结果表明,在阿特拉津降解菌DNS32发酵培养基组分优化方面,响应面法和基于人工神经网络的遗传算法都是可行的,基于人工神经网络的遗传算法具有更好的拟合度和预测准确度。  相似文献   
63.
Kinetics of H2 production from liquid swine manure supplemented with glucose by mixed anaerobic cultures was investigated using batch experiments under four different pH conditions (4.4, 5.0, 5.6, and uncontrolled). The temperature for the experiments was controlled at 37 ± 1°C and the length of experiments varied between 50 and 120 hours, depending upon the time needed for completion of each individual experiment. The modified Gompertz model was evaluated for its suitability for describing the H2 production potential, H2 production rate, and substrate consumption rate for all the experiments. The results showed that the Gompertz model could adequately fit the experimental results. The effect of pH was significant on all kinetic parameters for H2 production including yield, production rate and lag time, and the substrate utilization rate. The optimal pH was found to be 5.0, at which a maximum H2 production rate (0.64 L H2/h) was obtained, and deviation from the optimal pH could result in substantial reductions in H2 production rate (0.32 L H2/h for pH 4.0 and 0.43 L H2/h for pH 5.6). The results also showed that if pH was not controlled for the batch fermentation process, the substrate utilization efficiency could steeply decrease from 98.8% to 33.7%.  相似文献   
64.
污泥厌氧消化预处理技术综述   总被引:3,自引:0,他引:3  
全球环境问题已成为国际社会关注的焦点,围绕全球气候变化,降低温室气体排放,寻求再生能源,节能减排已成为目前国际科技发展的方向。通过"十一五"污水处理厂的建设,每年污泥产量已接近3000万吨(含水率80%脱水污泥计)以上,且以每年10%的速度递增。其处理与处置是制约社会经济发展的重要问题。但是,城市污泥蕴含有大量生物质能,通过借鉴国外先进技术与经验,开发城市污泥生物质能提取和利用技术,对我国节能减排具有重要战略意义。由于细胞壁的存在,使得污泥水解成为限制厌氧消化效率的重要瓶颈,而污泥强化预处理可有效提高污泥细胞壁的破坏,溶出胞内有机物,最大化回收剩余污泥中的有机能源。目前,预处理技术较多,如超声波预处理、热处理、微波预处理、碱解处理、臭氧预处理等,本文从物理、化学等角度分析了不同预处理对厌氧消化技术的影响。  相似文献   
65.
林可霉素菌(Streptomyces lincolnensis)利用吡唑酮废水的研究   总被引:1,自引:1,他引:0  
采用被吡唑酮废液驯化、分离、筛选后的林可霉素菌,并对其在摇瓶上利用吡唑酮废液中的硫酸铵发酵(7 d)生产林可霉素进行了研究。实验结果表明,废液加入培养基体积比都为1∶10,实验1中菌丝代谢和对照比正常,其中还原糖利用最快,在发酵后期为0.24 mg/L,林可霉素起步效价最低为2 100 IU/mL,与对照相比最后发酵效价降低了70 IU/mL;实验2发酵过程pH值偏低,全程为5.86~6.50,氨基氮代谢缓慢为40 mg/100 mL,最后林可霉素效价最低为4 480 IU/mL;实验3中废液在发酵进入48 h中后期的时候补入能促进菌丝体分泌,最后林可霉素为5 180 IU/mL,比对照发酵水平高出8.82%。可见实验3的实验设计有利于林可霉素菌利用吡唑酮废液生产林可霉素,为废物循环利用、变废为宝的可行性作了有意义尝试。  相似文献   
66.
A study of the anaerobic treatment of wastewaters derived from red (RWWW) and tropical fruit wine (TFWWW) production was carried out in four laboratory-scale fluidized bed reactors with natural zeolite as bacterial support. These reactors operated at mesophilic temperature (35°C). Reactors R1 and R2 contained Chilean natural zeolite, while reactors R3 and R4 used Cuban natural zeolite as microorganism support. In addition, reactors R1 and R3 processed RWWW, while reactors R2 and R4 used TFWWW as substrate. The biomass concentration attached to zeolites in the four reactors studied was found to be in the range of 44–46 g volatile solids (VS)/L after 90 days of operation time. Both types of zeolites can be used indistinctly in the fluidized bed reactors achieving more than 80%–86% chemical oxygen demand (COD) removals for organic loading rates (OLR) of up to at least 20 g COD/L d. pH values remained within the optimal range for anaerobic microorganisms for OLR values of up to 20 and 22 g COD/L d for RWWW and TFWWW, respectively. Toxicity and inhibition levels were observed at an OLR of 20 g COD/L d in reactors R1 and R3 while processing RWWW, whereas the aforementioned inhibitory phenomena were not observed at an OLR of 24 g COD/L d in R2 and R4, treating TFWWW as a consequence of the lower phenolic compound content present in this substrate. The volatile fatty acid (VFA) levels were always lower in reactors processing TFWWW (R2 and R4) and these values (< 400 mg/L, as acetic acid) were lower than the suggested limits for digester failure. The specific methanogenic activity (SMA) was twice as high in reactors R2 and R4 than in R1 and R3 after 120 days of operation when all reactors operated at an OLR of 20 g COD/L d.  相似文献   
67.
Vacuum evaporation consists in the boiling of a liquid substrate at negative pressure, at a temperature lower than typical boiling temperature at atmospheric conditions. Condensed vapor represents the so called condensate, while the remaining substrate represents the concentrate.This technology is derived from other sectors and is mainly dedicated to the recovery of chemicals from industrial by-products, while it has not been widely implemented yet in the field of agricultural digestate treatment. The present paper relates on experimental tests performed in pilot-scale vacuum evaporation plants (0.100 and 0.025 m3), treating filtered digestate (liquid fraction of digestate filtered by a screw-press separator). Digestate was produced by a 1 MWe anaerobic digestion plant fed with swine manure, corn silage and other biomasses. Different system and process configurations were tested (single-stage and two-stage, with and without acidification) with the main objectives of assessing the technical feasibility and of optimizing process parameters for an eventual technology transfer to full scale systems.The inputs and outputs of the process were subject to characterization and mass and nutrients balances were determined.The vacuum evaporation process determined a relevant mass reduction of digestate.The single stage configuration determined the production of a concentrate, still in liquid phase, with a total solid (TS) mean concentration of 15.0%, representing, in terms of mass, 20.2% of the input; the remaining 79.8% was represented by condensate. The introduction of the second stage allowed to obtain a solid concentrate, characterized by a content of TS of 59.0% and representing 5.6% of initial mass.Nitrogen balance was influenced by digestate pH: in order to limit the stripping of ammonia and its transfer to condensate it was necessary to reduce the pH. At pH 5, 97.5% of total nitrogen remained in the concentrate. This product was characterized by very high concentrations of total Kjeldhal nitrogen (TKN), 55,000 mg/kg as average.Condensate, instead, represented 94.4% of input mass, containing 2.5% of TKN. This fraction could be discharged into surface water, after purification to meet the criteria imposed by Italian regulation. Most likely, condensate could be used as dilution water for digestion input, for cleaning floor and surfaces of animal housings or for crop irrigation.The research showed the great effectiveness of the vacuum evaporation process, especially in the two stage configuration with acidification. In fact, the concentration of nutrients in a small volume determines easier transportation and reduction of related management costs. In full scale plants energy consumption is estimated to be 5–8 kWhe/m3 of digestate and 350 kWht/m3 of evaporated water.  相似文献   
68.
The aim of this study is to characterize different types of source selected organic fraction of municipal solid waste (SS-OFMSW) in order to optimize the upgrade of a sewage sludge anaerobic digestion unit by codigestion. Various SS-OFMSW samples were collected from canteens, supermarkets, restaurants, households, fruit–vegetable markets and bakery shops. The substrates characterization was carried out getting traditional chemical–physical parameters, performing elemental analysis and measuring fundamental anaerobic digestion macromolecular compounds such as carbohydrates, proteins, lipids and volatile fatty acids. Biochemical methane potential (BMP) tests were conducted at mesophilic temperature both on single substrates and in codigestion regime with different substrates mixing ratios. The maximum methane yield was observed for restaurant (675 NmlCH4/gVS) and canteens organic wastes (571 and 645 NmlCH4/gVS). The best codigestion BMP test has highlighted an increase of 47% in methane production respect sewage sludge digestion.  相似文献   
69.
采用批次小试实验对不同腐熟程度的蓝藻进行厌氧发酵产沼气实验研究。结果表明,新鲜蓝藻在30-35℃时腐熟7 d后,可在35℃的厌氧温度下获得最高的产气速率和246 mL/g COD的产气量,产气潜力为354 mL/g(VS)。厌氧反应15 d后,累计产气量、COD和VFA浓度趋于稳定。淀粉酶和脱氢酶的活性在厌氧反应初期受到抑制,蛋白酶活性和辅酶F420浓度在厌氧系统中逐渐增加,分别在第6天达到27.66μmol/(g VS·min)和第15天达到0.62μmol/g(VS)。15-18d是腐熟蓝藻适宜的中温厌氧发酵时间,少于以新鲜蓝藻为基质的厌氧消化时间。蓝藻腐熟过程促进了厌氧反应,腐熟7 d的蓝藻厌氧系统具有更高的微生物活性和产甲烷能力。  相似文献   
70.
烟草下脚料发酵制取乙醇   总被引:1,自引:0,他引:1  
通过单因素实验考察了硫酸浓度、固液比和水解时间对硫酸水解的影响。结果显示最优条件为:硫酸浓度为50%(w/w),固液比为10%(w/v),时间为100 min。烟草下脚料在最佳硫酸水解条件下,经5倍稀释,中和pH值至5~6。取经过滤后的水解液(FH)用酿酒酵母(Sacchharomyces cerevisiae)发酵产生乙醇,最大的乙醇浓度和乙醇产量分别为1.09g/L和54.5 g/kg。未过滤水解液(UFH,包括水解残渣)加入纤维素酶(70 U/100 mL)和酿酒酵母(Sacchharomyces cerevisiae)进行发酵,最大的乙醇浓度和乙醇产量分别为1.23 g/L和61.5 g/kg。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号